Model Transient Networks from Strongly Hydrogen-Bonded Polymers
نویسندگان
چکیده
Random copolymers consisting of n-butyl acrylate backbones with quadruple hydrogenbonding side chains based on 2-ureido-4[1H]-pyrimidinone (UPy) have been synthesized via controlled radical polymerization and postpolymerization functionalization. Through this synthetic strategy highUPymonomer content (15 mol %) can be reached while maintaining low polydispersity and excellent control over molecular weight, providing model reversible networks with well-defined molecular architecture. Despite low Tgs and a lack of entanglements or crystallinity, these materials behave as thermoplastic elastomers through the strong but reversible association of UPy groups. Bulk properties such as the plateau modulus, tensile modulus, and relaxation time scale are primarily determined by the average distance betweenUPy’s along the chain. Starting froma difunctional initiator, triblock copolymers can also be synthesized containing a homopolymermidblock and randomcopolymer end blocks, effectively concentrating the hydrogen-bonding groups near the chain ends. By controlling both the average composition and distribution of UPy’s along the polymer chain, macroscopic material properties such as stiffness and resistance to creep can be independently tuned.
منابع مشابه
Hydrogen bonded supramolecular polymers in moderately polar solvents.
Hydrogen bonded assemblies are usually decomposed by polar organic solvents. However, we have succeeded in preparing a strongly associated supramolecular polymer which forms viscous solutions in competitive solvents such as tetrahydrofuran.
متن کاملFormation of polypseudorotaxane networks by cross-linking the quadruple hydrogen bonded linear supramolecular polymers via bisparaquat molecules.
The creation of novel crown ether-paraquat polypseudorotaxane networks, constructed by bisparaquat monomers threading into the cavity of the crown ether units of linear supramolecular polymers that are formed based on the quadruple hydrogen bonded unit ureidopyrimidinone (Upy) in the concentrated solution, is described.
متن کاملUltrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy.
We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecula...
متن کاملSemi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers
We investigate the addition of stiffness to the lattice model of hydrogen-bonded polymers in two and three dimensions. We find that, in contrast to polymers that interact via a homogeneous short-range interaction, the collapse transition is unchanged by any amount of stiffness: this supports the physical argument that hydrogen bonding already introduces an effective stiffness. Contrary to possi...
متن کاملPicosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. II. Intracluster vibrational energy redistribution of the OH stretching vibration of hydrogen-bonded clusters.
A picosecond time-resolved IR-UV pump-probe spectroscopic study has been carried out for investigating the intracluster vibrational energy redistribution (IVR) and subsequent dissociation of hydrogen-bonded clusters of phenol (C6H5OH) and partially deuterated phenol (C6D5OH, phenol-d5) with various solvent molecules. The H-bonded OH stretching vibration was pumped by a picosecond IR pulse, and ...
متن کامل